当前位置:首页 > 社会

嫦娥五号完成第一次中途修正

时间:2020-11-25 09:48:40 来源:微闻网 作者:肖肖

据了解,11月24日22时6分,嫦娥五号完成第一次中途修正,距离嫦娥五号起飞已经过去了不到一天的时间,轨道修正的意义就是为了让探测器更加精准无误的飞行在预定的轨道上,因为此次嫦娥五号发射入轨精度相当的高,所以嫦娥五号第一次轨道修正量也很小,相信嫦娥五号一定会给我们带来更多的惊喜!下面大家和微闻网小编一起去了解一下嫦娥五号完成第一次中途修正,嫦娥五号第一次轨道修正哦~

嫦娥五号完成第一次中途修正

11月24日22时6分,嫦娥五号探测器3000N发动机工作2秒多,顺利完成第一次轨道修正,继续飞向月球。截至目前,嫦娥五号探测器各系统状态良好,已在轨飞行约17个小时,距离地球约16万公里。

嫦娥五号探测器在飞行过程中,受各种因素影响,会产生轨道偏差,需要测定探测器实际飞行轨道与设计轨道之间的偏差,完成对应的轨道控制,确保探测器始终飞行在适当的轨道上。

嫦娥五号任务发射入轨精度很高,本次轨道修正量很小

嫦娥五号出发,力争实现中国航天史上5个“首次”

11月24日4时30分,我国在中国文昌航天发射场,用长征五号遥五运载火箭成功发射探月工程嫦娥五号探测器,开启我国首次地外天体采样返回之旅。这是航天科技人员在文昌航天发射场庆祝发射成功。新华社记者 金立旺摄

2020年11月24日,嫦娥五号探测器在中国文昌航天发射场发射成功。这是我国探月工程“绕、落、回”三步走中,第三步的首次任务。

由中国航天科技集团有限公司研制的嫦娥五号探测器,是迄今为止我国研制的最为复杂的航天器系统之一,由轨道器、返回器、着陆器、上升器组成,包含15个分系统。在此次任务中,嫦娥五号将经历11个飞行阶段,20余天的在轨飞行过程,采集约2公斤月球样品返回地球。

国家航天局探月与航天工程中心副主任、探月工程三期副总设计师、嫦娥五号任务新闻发言人裴照宇介绍,如果任务取得成功,有望创造我国航天史上的5个“首次”。

多种方式的月面自动采样

作为此次任务的核心关键之一,月球表面自动采样封装是嫦娥五号任务中最引人注目的一个环节。

记者从航天科技集团五院了解到,嫦娥五号将在月面选定区域着陆,使出浑身解数采集月壤,实现我国首次地外天体采样与封装。

五院设计师们采用表钻结合,多点采样的方式,精心设计了两种“挖土”模式:钻取和表取。

当着陆上升组合体顺利软着陆在月球表面,嫦娥五号就开始为期2天的月面工作。它随身携带的钻取采样装置、表取采样装置、表取初级封装装置和密封封装装置等,将科学分工、精密配合,采取深钻、浅钻、“铲土”“挖土”“夹土”等方式,采集约2公斤月壤并进行密封封装。

据五院专家介绍,嫦娥五号任务采样装置为全新研制,技术新、难度大,需要考虑飞行任务以及探测器的测控、光照条件、电源、热控等条件约束;采样期间面临月面高温的工作环境;采样任务时序紧张、机构动作多、不确定因素多。因而采样封装是此次任务的核心环节之一。

月面起飞全靠航天器自力更生

完成月面工作后,嫦娥五号就要踏上归途。从月球回家可不容易,第一步能否迈好至关重要,这要突破我国航天史上另一个首次——月面起飞上升。

嫦娥五号上升器在月面点火起飞,是一个高难度科目。

众所周知,运载火箭在地球起飞有一套完备的发射系统,点火起飞位置经过精确测算,飞行轨道也是一遍遍计算好的。

而月面起飞就不一样了,没有一马平川的发射场,更没有成熟完备的发射塔架,上升器只能站在着陆器身上发射。而月球表面环境复杂,着陆器不一定是平稳状态,很有可能落在斜坡上或者凸起、下凹等不同的地形上,这都会增加起飞的难度。总而言之,整个起飞过程只能依靠航天器自力更生。

五院专家介绍,面对倾斜发射的技术难题,需要明确起飞稳定性的各项因素及其耦合的影响,依靠精确的定姿能力完成空中对准以实现精确入轨,必须通过大量地面仿真和试验对起飞上升发动机开展验证。但月面环境的特殊性,低重力、高真空等环境模拟使得地面验证较为困难。

经过一系列技术攻关,五院科研团队成功开展了各项试验验证,建立了一整套环环相扣的系统保证任务,护送嫦娥五号离开月球。

人类首次月球轨道无人交会对接

嫦娥五号上升器从月面起飞后,将飞到月球轨道上。但要它凭借一己之力将月球样品送回地球,却非力所能及。它需要在月球轨道上与轨道器、返回器组合体交会对接,把样品交给返回器,让其完成接下来的旅程。

上世纪70年代,苏联成功实施了3次无人月球采样任务,先后利用月球16号、20号、24号探测器,一共从月球取回300多克样品。全国空间探测技术首席科学传播专家庞之浩向科技日报记者介绍,苏联采用探测器从月面起飞直接返回地球的方案。探测器需要携带大量燃料,而携带样品的能力极为有限。

经过几十年的实践探索,我国在载人航天领域已经熟练掌握了近地轨道交会对接技术,但是在38万公里外的月球轨道上进行无人交会对接,不仅在我国尚属首次,而且也是人类航天史上的第一次,这给五院科研团队带来了极大挑战。

记者从五院了解到,嫦娥五号月球轨道交会对接采用停靠抓捕式交会对接方式,且无卫星导航信号支持,对接和样品转移过程自主性要求很高。这需要在考虑探测器的测控、光照条件、姿轨控、电源、热控等各种约束条件下完成交会对接飞行方案设计。

同时,月球轨道交会对接过程中,地面测控支持能力受限,受到对接机构大小的限制,对接精度的要求较高。此外,嫦娥五号对接机构中必须考虑样品转移装置的设计,保证对接精度满足样品转移相关要求。对接机构与样品转移机构一体化设计也是难点。

从上升器进入环月飞行轨道开始,一直到轨返组合体与上升器完成对接与样品转移为止,五院设计师为嫦娥五号精心设计了交会、对接、组合体运行、轨返组合体与对接舱分离等一系列关键动作,力助嫦娥五号精准完成样品接力。

带着月壤高速返回地球

近地轨道航天器再入返回大气层时,速度通常为每秒约7.9公里的第一宇宙速度。而嫦娥五号从月球风驰电掣般向地球飞来,速度接近每秒11.2公里的第二宇宙速度。

每秒3公里多的速度差,带来的力道大不相同。假如嫦娥五号冲劲过猛,一头撞向地球,整个任务都将前功尽弃。

为此,科研人员首次提出了半弹道跳跃式再入返回技术方案,就像在大气层表面打水漂一样,让返回器先高速进入大气层,随后借助大气层提供的升力“跳”起来,再以第一宇宙速度重新进入大气层返回地面。

2014年,我国发射嫦娥五号再入返回飞行试验器,模拟了嫦娥五号奔月、绕月、返回的全过程,并对跳跃式再入返回技术进行了成功验证,使我国成为继美、苏之后,世界第3个成功实施航天器从月球轨道重返地面的国家。

不过,当年的试验与如今的任务尚有细微差别。五院专家表示,嫦娥五号再入返回设计继承了此前飞行试验器的设计,任务再入航程也与飞行试验器基本一致。但装有月壤的样品容器重量有一定不确定性,有可能影响返回器的质量特性,这对返回器制导导航控制系统的鲁棒性(控制系统在一定参数摄动下,维持某些性能的特性)提出了较高要求。

除了前述四点,裴照宇还表示,我国将首次实施完整的月球样品存储、分析和研究全过程。

从立项到发射,嫦娥五号任务团队经历了10年的艰辛奋战。围绕诸多关键核心技术和难点,五院充分研究继承低轨道卫星、高轨道卫星、载人航天交会对接、地外天体无人着陆与航天器返回等技术经验,联合参研单位集中最强阵容攻克难关,确保了嫦娥五号探测器方案设计合理,各项功能性能满足任务的要求,研制过程技术状态和质量受控。

在接下来20多天里,嫦娥五号能否成功完成任务如期归来,让我们拭目以待。

中途轨道修正的关键在于什么?

中途轨道修正的关键在于修正时机的选择以及每次修正的实施精度。科研人员综合考虑当前实际轨迹偏差、导航偏差及推力偏差确定修正时机,同时采用在轨标定技术确保每次中途修正的控制精度。

记者从国家航天局获悉,8月2日7时0分,我国首次火星探测任务天问一号探测器3000N发动机工作20秒钟,顺利完成第一次轨道中途修正,继续飞向火星。

截至第一次轨道修正前,天问一号探测器已在太空中飞行约230个小时,距地球约300万公里,各系统状态良好。

轨道中途修正的原因:

首次火星探测任务探测器系统环绕器技术副总负责人朱庆华介绍道:“现在很多汽车都具有车道保持功能,如果车偏离了自己的车道,就会自动修正方向,让车回到原本的车道上来。火星探测器的轨道修正与之类似,但不同的是火星探测器要修正的不仅仅是飞行方向,还有飞行速度等多个变量。而在茫茫太空中,探测器也没有道路标线作为参照物,因此难度很大。”

在地火转移轨道飞行过程中,探测器会受到入轨偏差、控制精度偏差等因素影响。由于探测器长时间处于无动力飞行,微小的位置速度误差会逐渐累积和放大,如果不进行修正,将使探测器错过火星,导致“差之毫厘,谬以千里”的严重后果。

因此执行飞行任务时,需要制定地火转移轨迹中途修正控制策略,包括每次修正的时机、每次修正速度增量大小及速度增量方向。实际任务中,科研人员需要根据中途修正策略完成对应的探测器姿态和轨道控制,确保探测器始终飞行在预定的轨道上。

特别声明:以上内容来源于编辑整理发布,如有不妥之处,请与我方联系删除处理。邮箱:taopano06999@163.com